If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-8x-34=0
a = 4; b = -8; c = -34;
Δ = b2-4ac
Δ = -82-4·4·(-34)
Δ = 608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{608}=\sqrt{16*38}=\sqrt{16}*\sqrt{38}=4\sqrt{38}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4\sqrt{38}}{2*4}=\frac{8-4\sqrt{38}}{8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4\sqrt{38}}{2*4}=\frac{8+4\sqrt{38}}{8} $
| -2x+32=44-5x | | -2+32=44-5x | | 5/6w=4 | | 12=-x+24 | | x^2+3x-3780=0 | | 15y+y^2=100 | | x^2+2x-3782=0 | | 3y+4y-40=180 | | 4(k+2)=3(k+5 | | 4.5y=7020 | | 4(k+2=3(k+5 | | x+3.55=71 | | 19x+19=40-2x | | 3=(4/3x)+9 | | 5f=1/2 | | 9x2-138x-60=0 | | 2(6x+5)=-58 | | x^2+3x-3760=0 | | x/4.54=1.5 | | 25c+10=125-5c | | 6x+3=-3+4x+16 | | x^2+2x-3762=0 | | x+2x-3762=0 | | 12=9x^2 | | 9p+6=3(p+8 | | 0.37w=1.036 | | 9f=1/5 | | 3f=1/2 | | 9=3(5c-2) | | 4f=1/8 | | 4f=1/2 | | X^2+1x-12=26 |